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A simple physical model is presented to predict the neutron diffraction properties of deformed crystals. 
The main interest of this model is its general applicability to deformed crystals and its mathematical 
simplicity. At first this model was applied to curved crystals and its validity was checked by comparison 
with the diffraction patterns obtained from the exact solution of the dynamical neutron diffraction 
theory. A comparison between the prediction of the model and experimental data in curved Si crystals 
is presented. Finally the model is used to predict neutron diffraction patterns by crystals with a gradient 
in the lattice spacing and by deformed crystals in the general case. 

1. Introduction 

The most recent contribution to the theoretical prob- 
lem of X-ray diffraction by regularly deformed crystals 
has been presented by Katagawa & Kato (1974), who 
gave the exact wave fields for a spherical incident wave 
in the Laue case for a crystal having a constant strain 
gradient. Their work is based on the wave-optical 
theories developed by Takagi (1962, 1969) and Taupin 
(1964). Actually they were able to obtain exact ana- 
lytical solutions of the Takagi-Taupin differential equa- 
tions. These solutions are essentially expressed in terms 
of confluent hypergeometric functions. 

Concerning the neutrons, some diffraction patterns 
by ideally curved crystals were calculated by Klar & 
Rustichelli (1973) by extending Taupin's dynamical 
theory. The results of the neutron diffraction calcula- 
tions are substantially different from those relative to 
X-rays as a consequence of the low neutron absorption 
cross section. The neutron diffraction patterns were 
obtained by numerical solution of a complex differen- 
tial equation. 

Several neutron diffraction experiments were carried 
out on crystals with a gradient in the lattice spacing 
obtained by thermal gradient (Alefeld, 1969), on 
curved Ge crystals (Egert & Dachs, 1970), on Si crystals 
curved by chemical treatment (Antonini, Corchia, 
Nicotera & Rustichelli, 1972; Boeuf & Rustichelli, 
1974), on thermally bent CaF2 crystals (Kalus, Gobert 
& Schedler, 1973), on elastically curved Ge crystals 
(Kalus, 1975) and on elastically curved Si crystals 

(Frey, 1975). With the exception of Boeuf & Rustichelli 
(1974), none of the experimentalists has made a com- 
parison of the data with the exact dynamical theories 
of diffraction by regularly distorted crystals. 

In this paper we present a simple physical model for 
the deformed crystals, which allows the derivation of 
simple analytical expressions for the diffraction patterns 
by curved crystals, crystals with a gradient in the lattice 
spacing, and crystals of any kind of irregular deforma- 
tion, in the Bragg case. The model is analogous to one 
used to evaluate the light diffraction properties of 
cholesteric liquid crystals with a pitch gradient (Maz- 
kedian, Melone & Rustichelli, 1975) and offers a 
simple pictorial view of the physical phenomenon. 

At first, the validity of the model will be checked by 
comparison with the neutron diffraction patterns ob- 
tained theoretically by Klar & Rustichelli (1973). Then 
the model will be used to interpret exhaustively the 
experimental results of Boeuf & Rustichelli (1974). 
Finally the use of the model in the prediction of dif- 
fraction patterns by crystals with a gradient in the lat- 
tice spacing and by crystals with any kind of irregular 
distortion, will be discussed. 

2. Description of the model for curved crystals 

Neutron diffraction by a curved non-absorbing crystal 
in the Bragg law will be considered. The curved crystal 
will be divided into three regions, by analogy with the 
model of a cholesteric liquid crystal with a pitch gra- 
dient (Mazkedian, Melone & Rustichelli, 1975). The 
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notat ion of Klar  & Rustichelli (1973) will be used: c is 
a quanti ty associated with the crystal curvature, A the 
distance of  a given lattice plane from the surface of the 
crystal, y the deviation from the Bragg law of this plane, 

y(0)  the deviation from the Bragg law at the surface of  
the crystal. In these units (see also Zachariasen,  1967) 
the extinction length corresponds to A = 2  and the 
halfwidth (wD/2) of the Darwin curve is equal to y = 1; 
c is defined in Klar  & Rustichelli  (1973) by 

dy 
c . . . . . . . .  . (1) 

dA 

In these units c =  1 corresponds to the optimal curva- 
ture. F rom (1) is easily derived (29) of Klar  & Rusti- 
chelli (1973) 

y =  y(O) + cA . (2) 

Let us suppose that the crystal is oriented with 
respect to a monochromat ic  impinging neutron beam 
of wavelength 2 in such a way that there exists a plane 
at the depth AB inside the crystal for which the Bragg 
law is exactly verified, i.e. y is equal to zero. Then from 
(2) one obtains 

y(0) 
A , -  (3) 

C 

An will constitute the depth of the plane located at the 
centre of  region II. The upper limit .Ali and the lower 
limit tAn of  region II (Fig. 1) are defined by 

y(uAzi ) = -- 1 
y ( t A n )  = + 1. (4) 

Condit ion (4) becomes, by use of  (2): 

[ 1 + y(0)] 
uA[i -- ¢ 

1 -y(O) 
zAli -- (5) 

C 

As the condit ion - 1 < y  < 1 defines the total reflexion 
range of the Darwin curve (Zachariasen, 1967) region II 
corresponds to the volume of the curved crystal for 
which the deviation from the Bragg law is Gontained 
inside the total reflexion range. This allows us to as- 
sume, in analogy with the model  of  Mazkedian,  Melone 
& Rustichelli  (1975), that region II diffracts neutrons 
as a perfect crystal of the same thickness and having 
the orientation as the middle plane As ,  i.e. y = 0 .  

The reflectivity of  a perfect non-absorbing crystal is 
(Zachariasen, 1967) for X-rays 

sin z ( A I / ~ -  1) 
r =  (6) 

y Z _  1 + s i n  z ( A V y  z -  1)" 

(6) can also be used to evaluate reflectivity in the 
case of  neutron diffraction if the proper neutron quan- 
tities are inserted in the definitions of A and y (Klar  & 
Rustichelli,  1973). As a consequence, (6) can be used 

to evaluate the reflectivity rH of  region II from the total 
thickness An of region II which can be deduced from (5) 

2 
All = - - (7) 

C 
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% # , 

~ O ? ' ~  ! YI2=-4 t, REGION 
I 

• ~ e~ w~,.~ t:~7 / Yll=_ 2 ~ /  
Z - - o ~ " ~ - - . t ~ / - - - ~  _i ~ J  

\k Ill ~'~2"-~ ~-- I 

(a) (b) 
Fig. 1. Schematic representation of the model for a curved 

crystal; (a) shows the different regions in the actual crystal 
and (b) shows how the model consisting of perfect crystals 
is built up. 
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Fig. 2. Comparison of the model predictions with the exact 
dynamical theory for a curved crystal with a curvature c = 0" 1 
and a thickness A = 10. The full line is the neutron diffrac- 
tion pattern calculated by the exact dynamical theory (Klar 
& Rustichelli, 1973). The small circles are the values calcu- 
lated by the model. 
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Fig. 3. Comparison of the model predictions with the exact 
dynamical theory for a curved crystal with a curvature c = 1 
and a thickness A = 10. The full line is the neutron diffrac- 
tion pattern calculated with the exact dynamical theory 
(Klar & Rustichelli, 1973). The small circles are the values 
calculated by the model. 



A L B E R T I N I ,  BOEUF,  CESINI ,  M A Z K E D I A N ,  M E L O N E  A N D  R U S T I C H E L L I  865 

and by insertion of the value y = 0 which represents the 
average orientation of region II. The result is 

QI =tanh2 ( 2 )  2 . (8) 

Once region II is defined, regions I and III are im- 
plicitly defined (Fig. 1). At this stage one could approx- 
imate regions I and III with perfect crystals of the same 
thickness (Mazkedian, Melone & Rustichelli, 1975). 
Then the reflectivity of the crystal would be given by 

r =  1 - (1 - ri) (1 -- rii ) (1 -- riii) . (9) 

However, to increase the accuracy of the model each 
of regions I and III will be subdivided into many per- 
fect crystals having the same thickness as region II and 
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Fig. 4. Compar i son  of  the model  predict ions with the exact 
dynamica l  theory  for  a curved crystal with a curva ture  c = 2 
and a thickness A = 10. The  full line is the neu t ron  diffrac- 
t ion pat tern  calculated with the exact dynamica l  theory  
(Klar  & Rustichelli,  1973). The  small circles are  the values 
calculated by the model .  
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Fig. 5. Compar i son  between the curve deduced  f rom the theo- 
retical mode l  and  the exper imenta l  da ta  (Boeuf  & Rusti-  
chelli, 1974). The  exper imenta l  points represent  the inte- 
gra ted reflecting power  normal ized  by the kinemat ical  
reflecting power  as a funct ion  of  the crystal curva ture  for 
the (111) plane and  the 1 m m  thick crystals. Points Bt and  C1 
cor respond  to an actual  curva ture  of  the crystal of  90 and  
55 m respectively. 

as a consequence a misorientation Ay=2,  each one 
with respect to the adjacent one. In such a way the 
middle planes of the many perfect crystals maintain the 
same orientation as in the actual curved crystal. By 
indexing the perfect crystals in regions I and III starting 
from the crystal adjacent to region II (Fig. 1), one can 
calculate the reflectivity r~  (or rinK) of the perfect 
crystal K of region I (or Ill) from (6) by inserting the 
values" 

2 2 
A I K - -  , AIIIK = - -  

c c 

ylr = - -2K,  YlllK = + 2 K .  (10) 

The reflectivity r I (or rm) of region I (or III) can be 
derived by the same principle underlying (9) which 
leads to the expression 

n l  n l l i  

r I = 1 - -  [ I  (1 - r~r), rill  = 1 - -  YI (1 --  rlllK ) (11)  
k = l  k = l  

where n~ and nm are the number of perfect crystals in 
which regions I and III are decomposed, respectively. 

By inserting the obtained values for ri, rn, rni in (9) 
one obtains the value for the reflectivity r=Pn/Po of 
the curved crystal, for a given orientation y(0) of the 
crystal itself, with the neutron wavelength 2 and the 
curvature c being imagined fixed and considered as 
parameters. By varying y(0) one obtains the rocking 
curve r=r[y(O)]. It is clear physically that by changing 
y(0) the location of region III changes, as can be seen 
from (3) and (5), and the quantities n~ and nln also 
change. For certain values of y(0) regions I or III, and 
eventually region II, can disappear. 

3. Appl icat ion  of  the mode l  to pract ica l  cases  

3.1 Comparison with the exact dynamical theory 
It is clear that the model is quite simplified and must 

be checked before being applied. Therefore the rocking 
curves r= r[y(0)] obtained by the model were compared 
with those reported by Klar & Rustichelli (1973) which 
were deduced by applying the exact dynamical theory 
of neutron diffraction. The comparison was performed 
for a crystal of thickness A = 10 (i.e. equal to five ex- 
tinction lengths) and for three values of curvature 
(c = 0.1, c = 1, c = 2). The results of the comparison are 
shown in Figs. 2, 3 and 4 where the circles represent 
the r values obtained by the model. It appears that the 
agreement is quite satisfactory, with a slight discre- 
pancy for the largest c value. 

3.2 Comparison with experimental data on curved 
silicon crystals 

The theoretical predictions of the model were com- 
pared with the experimental data obtained by Boeuf & 
Rustichelli (1974) on curved Si crystals. In this exper- 
iment the ratio between plane and curved Si crystals 
was measured as a function of the neutron wavelength 
with different reflecting planes. As a consequence of 
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theoretical considerations, the experimental data were 
rearranged in such a way that for each reflexion the 
ratio between the integral reflecting power (R~,) of the 
curved crystal and the corresponding kinematical re- 
flecting power [R~(kine)] could be plotted as a function 
of the curvature c. Fig. 5 shows the comparison be- 
tween experiment and the theoretical curve deduced 
from the model for the (111) reflecting plane of 1 mm 
thick crystals. Fig. 6 shows the comparison for the (111) 
reflecting plane of 0.5 mm thick crystals. Figs. 7 and 
8 show the comparison for the (551) reflecting plane 
of 1 mm and 0.5 mm thick crystals, respectively. Fig. 9 
shows the comparison for the (115) reflecting plane of 
1 mm thick crystals. The agreement is generally satis- 
factory, taking into account that neutron absorption is 
not included in the model, with the exception of the 
(115) plane. However the discrepancy in this case can 
be explained by the non-absolute perfection of the 
crystals used before curvature. In fact at so low a 
curvature the intrinsic imperfection of the crystal be- 
comes more relevant than the curvature effect. 

4. Neutron diffraction by crystals with a gradient 
in lattice spacing 

The model developed in § 2 for curved crystals can be 
directly extended to predict neutron diffraction patterns 
from crystals with a gradient in the lattice spacing. In 
fact it will be shown that a crystal with a given gradient 
(grad d) in the lattice spacing d is equivalent, as far as 
the neutron diffraction properties are concerned, to a 
curved crystal having a certain curvature c, which is a 
function of grad d and of the crystallographic charac- 
teristics of the crystal. It will be supposed that the 
crystal has a pure lattice gradient without any curva- 
ture of the diffracting planes and that the gradient is 
perpendicular to the surface of the crystal (for the most 
general case see the Appendix). Then at a depth At 
below the surface of the crystal the variation Ad in the 
lattice spacing is 

Ad(At)=(grad d)At. (12) 

This Ad will introduce a deviation from the Bragg 
law corresponding to a certain value y(At) which could 
be imagined to be introduced also by a misorientation 
AO(At) due to a certain curvature c to be determined. 
In order to calculate c we use the differentiated Bragg 
equation 

A2 Ad 
2 - ( c o t  O)AO+-d- (13) 

in which A2/2 is assumed to be zero. By inserting the 
dd(At) and AO(At) in (13) one obtains 

grad d 
AO(At)= d (tan O)At. (14) 

On the other hand in a crystal of curvature radius Q 
the angular misorientation along the incident beam at 

a depth At is given [see for instance equation (5) of 
Klar & Rustichelli, 1973] by 

At 
AO(At)= - -  cot c~. (15) 

Q 

By equating (14) and (15) one obtains the value of 0 
equivalent to a given grad d. In order to express 0 in 
units of ¢, defined above, one can use equation (10) of 
Boeuf & Rustichelli (1974) 

i t  tex, 
¢= c ~,AO(Darwin)} cot ~. (16) 

From (14), (15) and (16), one obtains 

grad d tex, [ ...... tan 0 (17) c - -  
d \ A0(Darwin) ! " 
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Fig. 6. Comparison between the curve deduced from the 

theoretical model and the experimental data (Boeuf & 
Rustichelli, 1974). The experimental points represent the 
integrated reflecting power normalized by the kinematical 
reflecting power as a function of the crystal curvature for the 
(111) plane and the 0.5 mm thick crystals. Points B0 and Co 
correspond to an actual curvature of the crystal of 35 and 
20 m respectively. 
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Fig. 7. Comparison between the curve deduced from the 
theoretical model and the experimental data (Boeuf & 
Rustichelli, 1974). The experimental points represent the 
integrated reflecting power normalized by the kinematical 
reflecting power as a function of the crystal curvature for 
the (551) plane and the 1 mm thick crystals. Points B1 and C1 
correspond to an actual crystal curvature of 90 and 55 m 
respectively. 
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(17) states that a crystal with a given gradient will give 
rise to a diffraction pattern equal to a curved crystal 
with a curvature c given by (17) itself. 

Table 1 lists the equivalence obtained by (17) be- 
tween grad d and c for different reflexions of different 
crystals at the neutron wavelength 2 = 1.2 A. 

5. Conclusion 

A simple model  was used to predict, in an approxima- 
tive way, neutron diffraction patterns by curved crys- 
tals, crystals with a gradient in the lattice spacing and 
deformed crystals in the general case. Some of these 
cases can be treated by rigorous and sophisticated 
theories, with which the present model  does not pre- 
tend to compete. The interest of  the model  is its general 

Table 1. Values of grad d for different reflexions of 
various crystals at the neutron wavelength 2 = 1"2 A 

grad d 1/d grad d 
Reflecting corresponding corresponding 

plane to c = 1 to c = 1 
hkl % c m -  1 

Si 111 2"72 x 10 -1° 0-867 
333 1"13 x 10 -11 0.299 
555 9"90 x 10 -12 0"158 

Ge 111 0"97 x 10 -I° 0"296 
333 1"04 x 10 -11 0"096 
555 1"04 x 10 -lz 0"016 

AI 111 1"61 x 10 -1° 0"689 
222 0"81 x 10 -11 0"069 
333 1"17 x 10 -~z 0"015 

Be 100 4-18 x 10 -1° 2"13 
200 2"25 x 10 -n  0.229 

Cu 111 2.19x 10 -1° 1-05 

101 ~ ~  ' 
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0 5 10 15 20 

_-~ c =dy 
dA 

Fig. 8. Comparison between the curve deduced from the 
theoretical model and the experimental data (Boeuf & 
Rustichelli, 1974). The experimental points represent the 
integrated reflecting power normalized by the kinematical 
reflecting power as a function of the crystal curvature for the 
(551) plane and the 0.5 mm thick crystals. Points B0 and Co 
correspond to an actual crystal curvature of 35 and 20 m 
respectively. 

o ic 

~ i ~  
u l  0.5 

Si(115) 
o C 1 

• B I 

i 
J 

0 0.1 0.2 0.3 
C= dy 

dA 

Fig. 9. Comparison between the curve deduced from the 
theoretical model and the experimental data (Boeuf & 
Rustichelli, 1974). The experimental points represent the 
integrated reflecting power normalized by the kinematical 
reflecting power as a function of the crystal curvature for the 
(115) plane and the 1 mm thick crystal. Points B1 and C~ 
correspond to an actual crystal curvature of 90 and 55 m 
respectively. 

applicabili ty to deformed crystals and its extreme sim- 
plicity, being based only on the concept of  width of  the 
Darwin  curve and of  reflectivity by a perfect crystal of  
finite thickness. This makes  it easily applicable by any 
experimentalist.  The model  was checked with the 
results of  a rigorous application of  the Taupin  dyn- 
amical  theory of  diffraction by deformed crystals. Then 
it was applied to the interpretat ion of a recent neutron 
diffraction experiment on curved Si crystals. 

APPENDIX 
Neutron diffraction by a deformed crystal 

in the general case 

Let us consider a deformed crystal in which an arbi- 
trary deformation exists as a function of  depth A below 
the surface. The only restriction made on the character 
of  the deformation is that for each value of  A along the 
path of the pr imary neutron beam, the values of lattice 
plane orientation and lattice parameters can be de- 
fined. As a consequence the function y(A) is defined for 
each value of  A once the orientation of  the crystal y(0) 
is known. In order to obtain y(A) one could use equa- 
tions (18) and (25) of  Klar  & Rustichelli  (1973). How- 
ever it is perhaps easier to imagine that  the misorienta- 
tion of the lattice plane at depth A, as compared to the 
plane A =0 ,  is due to an average curvature which can 
be easily calculated by geometrical considerations. 
This curvature can be expressed in units of  c and allows 
the evaluated insertion in (7). As a consequence, this 
same equat ion permits the evaluation of  yo(A) due to 
the plane misorientat ion.  In an analogous way one can 
calculate from the result of  § 4, the value of  yd(A) due 
to the variat ion of the lattice spacing at depth A relative 
to that at A =0 .  The function y(A) is obtained as a sum 
ofyo(A) and yd(A). Once function y(A) is obtained, the 
zero values (Am,ABz,... ,As,) will correspond to the 
lattice planes satisfying the Bragg equation. Fig. 10 
represents a generic function y(A) which, for the sake 
of  simplicity, is supposed to be continuous,  a l though 
the following considerations can also be applied in case 
of  discontinuity. 
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With each zero value, i.e. to each An j, will be associated 
a so-called region II, defined as in the case of curved 
crystals, by (4), namely by the condition - 1 < y  < 1. 
This definition is visualized in Fig. 10. Obviously the 
thickness of each region II will depend on the slope of 
the function y(A) at the given Asj. It is supposed that 
the set of regions II can be treated as a unique perfect 
crystal whose reflectivity can be calculated by (8) where 
the A value is obtained by summation of all the region 
II thicknesses. Once set II is defined, the remaining 
deformed crystal will be subdivided into several sets, 
each one determined by the condition Ay=2,  starting 
from the boundary of set II. Thus a first set will be 
determined by the A value, satisfying the condition 
+ 1 <y(A)< + 3, a second set by + 3 < y  < + 5, and so 
on in analogy with the model presented in Fig. 1 for 
the case of a curved crystal. Each one of these sets, as 
for set II, will be supposed to consist of perfect regions 
having the same orientation of the middle plane. Each 
one of the sets in which the remaining part of the 
crystal is decomposed has a neutron reflectivity rj given 
by (6). The thickness A will again be obtained by the 
summation of all the corresponding regions. In such a 
way the deformed crystal has been divided into a series 
of perfect crystal regions including set II, whose re- 
flectivities can be calculated by (6) or (8). Then, by 
calling rj the reflectivity of the generic perfect crystal 
set, the total reflectivity of the deformed crystal is given 
by 

~.= l -  f i  (1-~j) (18) 
j = l  

in analogy with (9) or (11) where n is the number of 
sets obtained for a given crystal orientation. 
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